Description: Realistic Modeling of Strongly Correlated Electron Systems by Georg Keller The physics of materials with strongly correlated electrons is one of the most exciting topics of present-day theoretical and experimental solid-state re-search. A wide variety of interesting phenomena, among them metal-insulator transitions, the giant and colossal magnetoresistance effect and heavy-fermion behavior, can be attributed to electronic correlations. One focus of current re-search is on transition metals and especially transition metal oxides due to the diversity of correlation phenomena found in these systems. In this thesis, the physics of strongly correlated transition metal oxide sys-tems is investigated with the LDA+DMFT approach. This method combines the advantages of the local density approximation (LDA), which provides a re-alistic ab initio description for many materials, with the correct treatment of the local correlations within dynamical mean-field theory (DMFT). The self-consistent equations of the DMFT are solved with an auxiliary-field quantum Monte Carlo algorithm. In particular, the metallic and insulating phase of V2O3 and the peculiarities of its metal-insulator transition are explored.Furthermore, the strongly correlated metals SrVO3 and CaVO3 are studied, as well as LiV2O4 which is the first d-electron system found to exhibit heavy-fermion behavior. Where possible, the theoretical results are compared with recent experimental data. FORMAT Paperback LANGUAGE English CONDITION Brand New Long Description The physics of materials with strongly correlated electrons is one of the most exciting topics of present-day theoretical and experimental solid-state research. A wide variety of interesting phenomena, among them metal-insulator transitions, the giant and colossal magnetoresistance effect and heavy-fermion behavior, can be attributed to electronic correlations. One focus of current research is on transition metals and especially transition metal oxides due to the diversity of correlation phenomena found in these systems. In this thesis, the physics of strongly correlated transition metal oxide systems is investigated with the LDA+DMFT approach. This method combines the advantages of the local density approximation (LDA), which provides a realistic ab initio description for many materials, with the correct treatment of the local correlations within dynamical mean-field theory (DMFT). The self-consistent equations of the DMFT are solved with an auxiliary-field quantum Monte Carlo algorithm. In particular, the metallic and insulating phase of V2O3 and the peculiarities of its metal-insulator transition are explored. Furthermore, the strongly correlated metals SrVO3 and CaVO3 are studied, as well as LiV2O4 which is the first d-electron system found to exhibit heavy-fermion behavior. Where possible, the theoretical results are compared with recent experimental data. Details ISBN3832509704 Author Georg Keller Short Title REALISTIC MODELING OF STRONGLY Pages 150 Language English ISBN-10 3832509704 ISBN-13 9783832509705 Media Book Format Paperback Year 2005 Publication Date 2005-08-01 Series Number 6 Imprint Logos Verlag Berlin GmbH Place of Publication Berlin Country of Publication Germany Publisher Logos Verlag Berlin GmbH Series Augsburger Schriften Zur Mathematik, Physik Und Informatik Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:137242310;
Price: 168.87 AUD
Location: Melbourne
End Time: 2025-01-17T02:49:14.000Z
Shipping Cost: 0 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
Format: Paperback
Language: English
ISBN-13: 9783832509705
Author: Georg Keller
Type: NA
Book Title: Realistic Modeling of Strongly Correlated Electron Systems
Publication Name: NA