Description: Hands-On Graph Neural Networks Using Python by Maxime Labonne Estimated delivery 3-12 business days Format Paperback Condition Brand New Description Hands-On Graph Neural Networks Using Python is a comprehensive guide to building and training graph neural networks for a variety of real-world applications. With clear explanations and plenty of hands-on examples, this book is a valuable resource for anyone looking to learn about and apply graph neural networks to their own projects. Publisher Description Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and appsPurchase of the print or Kindle book includes a free PDF eBookKey FeaturesImplement -of-the-art graph neural architectures in PythonCreate your own graph datasets from tabular dataBuild powerful traffic forecasting, recommender systems, and anomaly detection applicationsBook DescriptionGraph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery.Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, youll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps.By the end of this book, youll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.What you will learnUnderstand the fundamental concepts of graph neural networksImplement graph neural networks using Python and PyTorch GeometricClassify nodes, graphs, and edges using millions of samplesPredict and generate realistic graph topologiesCombine heterogeneous sources to improve performanceForecast future events using topological informationApply graph neural networks to solve real-world problemsWho this book is forThis book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether youre new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book. Author Biography Maxime Labonne is currently a senior applied researcher at Airbus. He received a M.Sc. degree in computer science from INSA CVL, and a Ph.D. in machine learning and cyber security from the Polytechnic Institute of Paris. During his career, he worked on computer networks and the problem of representation learning, which led him to explore graph neural networks. He applied this knowledge to various industrial projects, including intrusion detection, satellite communications, quantum networks, and AI-powered aircrafts. He is now an active graph neural network evangelist through Twitter and his personal blog. Details ISBN 1804617520 ISBN-13 9781804617526 Title Hands-On Graph Neural Networks Using Python Author Maxime Labonne Format Paperback Year 2023 Pages 354 Publisher Packt Publishing Limited GE_Item_ID:141587622; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 73.5 USD
Location: Fairfield, Ohio
End Time: 2024-11-12T07:02:59.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9781804617526
Book Title: Hands-On Graph Neural Networks Using Python
Number of Pages: 354 Pages
Publication Name: Hands-On Graph Neural Networks Using Python : Practical Techniques and Architectures for Building Powerful Graph and Deep Learning Apps with Pytorch
Language: English
Publisher: Packt Publishing, The Limited
Publication Year: 2023
Subject: Neural Networks, General
Type: Textbook
Item Length: 92.5 in
Subject Area: Computers, Science
Author: Maxime Labonne
Item Width: 75 in
Format: Trade Paperback