Cane Creek

FROG 1/72-SCALE FOCKE-WULF Fw190A-4 WW2 GERMAN LUFTWAFFE JG KIT 393P (1959)

Description: Shipping FROG 1/72-SCALE FOCKE-WULF Fw190A-4 WW2 GERMAN LUFTWAFFE JG KIT 393P (1959) FROG 1/72-SCALE FOCKE-WULF Fw190A-4 WW2 GERMAN LUFTWAFFE JG KIT 393P (1959) UNBUILT 1/72-SCALE PLASTIC MODEL KITS INVENTORIED 100% COMPLETE. Includes Original Instructions and Decals. IF YOU HAVE ANY QUESTIONS OR CONCERNS, PLEASE ASK ME BEFORE BIDDING / PURCHASING I WANT EVERYONE TO BE 100% SATISFIED WITH NO SURPRISES OR MIS-UNDERSTANDINGS ***IF YOU DESIRE TO PURCHASE MULTIPLE KITS AT THE SAME TIME I WILL COMBINE INTO A SINGLE SHIPMENT AND ADJUST THE INVOICE TO REFLECT THE MOST ECONOMICAL POSTAGE CHARGE FOR ALL ITEMS SHIPPED TOGETHER*** ------------------------------------------------------------------------- Additional Information from Internet Encyclopedia The Focke-Wulf Fw 190 Würger (English: Shrike) is a German single-seat, single-engine fighter aircraft designed by Kurt Tank in the late 1930s and widely used during World War II. Along with its well-known counterpart, the Messerschmitt Bf 109, the Fw 190 became the backbone of the Luftwaffe's Jagdwaffe (Fighter Force). The twin-row BMW 801 radial engine that powered most operational versions enabled the Fw 190 to lift larger loads than the Bf 109, allowing its use as a day fighter, fighter-bomber, ground-attack aircraft and, to a lesser degree, night fighter. The Fw 190A started flying operationally over France in August 1941, and quickly proved superior in all but turn radius to the Royal Air Force's main front-line fighter, the Spitfire Mk. V,[3] particularly at low and medium altitudes. The 190 maintained superiority over Allied fighters until the introduction of the improved Spitfire Mk. IX.[4] In November/December 1942, the Fw 190 made its air combat debut on the Eastern Front, finding much success in fighter wings and specialised ground attack units called Schlachtgeschwader (Battle Wings or Strike Wings) from October 1943 onwards. The Fw 190A series' performance decreased at high altitudes (usually 6,000 m (20,000 ft) and above), which reduced its effectiveness as a high-altitude interceptor. From the Fw 190's inception, there had been ongoing efforts to address this with a turbosupercharged BMW 801 in the B model, the much longer-nosed C model with efforts to also turbocharge its chosen Daimler-Benz DB 603 inverted V12 powerplant, and the similarly long-nosed D model with the Junkers Jumo 213. Problems with the turbocharger installations on the -B and -C subtypes meant only the D model entered service in September 1944. These high-altitude developments eventually led to the Focke-Wulf Ta 152, which was capable of extreme speeds at medium to high altitudes ( 755 km/h (408 kn; 469 mph) at 13,500 m (44,300 ft)). While these "long nose" 190 variants and the Ta 152 derivative especially gave the Germans parity with Allied opponents, they arrived too late to affect the outcome of the war. The Fw 190 was well-liked by its pilots. Some of the Luftwaffe's most successful fighter aces claimed many of their kills while flying it, including Otto Kittel, Walter Nowotny and Erich Rudorffer. The Fw 190 provided greater firepower than the Bf 109 and, at low to medium altitude, superior manoeuvrability, in the opinion of German pilots who flew both fighters. It was regarded as one of the best fighter planes of World War II. Between 1934 and 1935 the German Ministry of Aviation (RLM) ran a contest to produce a modern fighter for the rearming Luftwaffe. Kurt Tank entered the parasol-winged Fw 159 into the contest, against the Arado Ar 80, Heinkel He 112 and Messerschmitt Bf 109. The Fw 159 was hopelessly outclassed, and was soon eliminated from the competition along with the Ar 80. The He 112 and Bf 109 were generally similar in design but the 109's lightweight construction gave it a performance edge the 112 was never able to match. On 12 March 1936 the 109 was declared the winner. Even before the 109 had entered squadron service, in autumn 1937 the RLM sent out a new tender asking various designers for a new fighter to fight alongside the Bf 109, as Walter Günther had done with his firm's follow-on to the unsuccessful He 100 and He 112. Although the Bf 109 was an extremely competitive fighter, the Ministry was worried that future foreign designs might outclass it, and wanted to have new aircraft under development to meet these possible challenges. Kurt Tank responded with a number of designs, most based around a liquid-cooled inline engine. However, it was not until a design was presented using the air-cooled, 14-cylinder BMW 139 radial engine that the Ministry of Aviation's interest was aroused. As this design used a radial engine, it would not compete with the inline-powered Bf 109 for engines, when there were already too few Daimler-Benz DB 601s to go around. This was not the case for competing designs like the Heinkel He 100 or twin-engined Focke-Wulf Fw 187, where production would compete with the 109 and Messerschmitt Bf 110 for engine supplies. After the war, Tank denied a rumour that he had to "fight a battle" with the Ministry to convince them of the radial engine's merits. At the time, the use of radial engines in land-based fighters was relatively rare in Europe, as it was believed that their large frontal area would cause too much drag on something as small as a fighter. Tank was not convinced of this, having witnessed the successful use of radial engines by the U.S. Navy, and felt a properly streamlined installation would eliminate this problem. The hottest points on any air-cooled engine are the cylinder heads, located around the circumference of a radial engine. In order to provide sufficient air to cool the engine, airflow had to be maximized at this outer edge. This was normally accomplished by leaving the majority of the front face of the engine open to the air, causing considerable drag. During the late 1920s, NACA led development of a dramatic improvement by placing an airfoil-shaped ring around the outside of the cylinder heads (the NACA cowling). The shaping accelerated the air as it entered the front of the cowl, increasing the total airflow, and allowing the opening in front of the engine to be made smaller. Tank introduced a further refinement to this basic concept. He suggested placing most of the airflow components on the propeller, in the form of an oversized propeller spinner whose outside diameter was the same as the engine. The cowl around the engine proper was greatly simplified, essentially a basic cylinder. Air entered through a small hole at the centre of the spinner, and was directed through ductwork in the spinner so it was blowing rearward along the cylinder heads. To provide enough airflow, an internal cone was placed in the centre of the hole, over the propeller hub, which was intended to compress the airflow and allow a smaller opening to be used. In theory, the tight-fitting cowling also provided some thrust due to the compression and heating of air as it flowed through the cowling. As to the rest of the design philosophy, Tank wanted something more than an aircraft built only for speed. Tank outlined the reasoning: The Messerschmitt 109 and the British Spitfire, the two fastest fighters in world at the time we began work on the Fw 190, could both be summed up as a very large engine on the front of the smallest possible airframe; in each case armament had been added almost as an afterthought. These designs, both of which admittedly proved successful, could be likened to racehorses: given the right amount of pampering and easy course, they could outrun anything. But the moment the going became tough they were liable to falter. During World War I, I served in the cavalry and in the infantry. I had seen the harsh conditions under which military equipment had to work in wartime. I felt sure that a quite different breed of fighter would also have a place in any future conflict: one that could operate from ill-prepared front-line airfields; one that could be flown and maintained by men who had received only short training; and one that could absorb a reasonable amount of battle damage and still get back. This was the background thinking behind the Focke-Wulf 190; it was not to be a racehorse but a Dienstpferd, a cavalry horse. In contrast to the complex, failure-prone fuselage-mounted main gear legs of the earlier Fw 159, one of the main features of the Fw 190 was its wide-tracked, inwards-retracting landing gear. They were designed to withstand a sink rate of 4.5 metres per second (15 feet per second, 900 feet per minute), double the strength factor usually required. Hydraulic wheel brakes were used.[14] The wide-track undercarriage produced better ground handling characteristics, and the Fw 190 suffered fewer ground accidents than the Bf 109. (The Bf 109's narrow-track, outwards-retracting landing gear hinged on its wing root structure to help lower weight, but this led to inherent weakness and many failures and ground loops.) The Fw 190's retractable tail gear used a cable, anchored to the "elbow" at the midpoint of the starboard maingear's transverse retraction arms, which ran aftwards within the fuselage to the vertical fin to operate the tailwheel retraction function. The tailwheel's retraction mechanical design possessed a set of pulleys to guide the aforementioned cable to the top of the tailwheel's oleo strut, pulling it upwards along a diagonal track within the fin, into the lower fuselage this mechanism was accessible through a prominently visible triangular-shaped hinged panel, on the left side in the fin's side sheetmetal covering. On some versions of the Fw 190 an extended tailwheel oleo strut could be fitted for larger-sized loads (such as bombs or even a torpedo) beneath the fuselage. Most aircraft of the era used cables and pulleys to operate their controls. The cables tended to stretch, resulting in the sensations of "give" and "play" that made the controls less crisp and responsive, and required constant maintenance to correct. For the new design, the team replaced the cables with rigid pushrods and bearings to eliminate this problem. Another innovation was making the controls as light as possible. The maximum resistance of the ailerons was limited to 3.5 kg (8 lb), as the average man's wrist could not exert a greater force. The empennage (tail assembly) featured relatively small and well-balanced horizontal and vertical surfaces. The design team also attempted to minimize changes in the aircraft's trim at varying speeds, thus reducing the pilot's workload. They were so successful in this regard that they found in-flight-adjustable aileron and rudder trim tabs were not necessary. Small, fixed tabs were fitted to control surfaces and adjusted for proper balance during initial test flights. Only the elevator trim needed to be adjusted in flight (a feature common to all aircraft). This was accomplished by tilting the entire horizontal tailplane with an electric motor, with an angle of incidence ranging from 3° to +5°. Another aspect of the new design was the extensive use of electrically powered equipment instead of the hydraulic systems used by most aircraft manufacturers of the time. On the first two prototypes, the main landing gear was hydraulic. Starting with the third prototype, the undercarriage was operated by push buttons controlling electric motors in the wings, and was kept in position by electric up and down-locks. The armament was also loaded and fired electrically. Tank believed that service use would prove that electrically powered systems were more reliable and more rugged than hydraulics, electric lines being much less prone to damage from enemy fire. Like the Bf 109, the Fw 190 featured a fairly small wing planform with relatively high wing loading. This presents a trade-off in performance. An aircraft with a smaller wing suffers less drag under most flight conditions and therefore flies faster and may have better range. However, it also means the aircraft has a higher stalling speed making it less maneuverable, and also reduces performance in the thinner air at higher altitudes. The wings spanned 9.5 m (31 ft 2 in) and had an area of 15 m2 (161 ft2). The wing was designed using the NACA 23015.3 airfoil at the root and the NACA 23009 airfoil at the tip. Earlier aircraft designs generally featured canopies consisting of small plates of perspex (called Plexiglas in the United States) in a metal "greenhouse" framework, with the top of the canopy even with the rear fuselage - this was true of the IJNAS Mitsubishi A6M Zero, whose otherwise "all-around view" canopy was still heavily framed. This design considerably limited visibility, especially to the rear. The introduction of vacuum forming led to the creation of the "bubble canopy" which was largely self-supporting, and could be mounted over the cockpit, offering greatly improved all-round visibility. Tank's design for the Fw 190 used a canopy with a frame that ran around the perimeter, with only a short, centerline seam along the top, running rearward from the radio antenna fitting where the three-panel windscreen and forward edge of the canopy met, just in front of the pilot. The eventual choice of the BMW 801 14-cylinder radial over the more troublesome BMW 139 also brought with it a BMW-designed cowling "system" which integrated the radiator used to cool the motor oil. An annular, ring-shaped oil cooler core was built into the BMW-provided forward cowl, just behind the fan. The outer portion of the oil cooler's core was in contact with the main cowling's sheet metal. Comprising the BMW-designed forward cowl, in front of the oil cooler was a ring of metal with a C-shaped cross-section, with the outer lip lying just outside the rim of the cowl, and the inner side on the inside of the oil cooler core. Together, the metal ring and cowling formed an S-shaped duct with the oil cooler's core contained between them. Airflow past the gap between the cowl and outer lip of the metal ring produced a vacuum effect that pulled air from the front of the engine forward across the oil cooler core to provide cooling for the 801's motor oil. The rate of cooling airflow over the core could be controlled by moving the metal ring in order to open or close the gap. The reasons for this complex system were threefold. One was to reduce any extra aerodynamic drag of the oil radiator, in this case largely eliminating it by placing it within the same cowling as the engine. The second was to warm the air before it flowed to the radiator to aid warming the oil during starting. Finally, by placing the radiator behind the fan, cooling was provided even while the aircraft was parked. The disadvantage to this design was that the radiator was in an extremely vulnerable location, and the metal ring was increasingly armoured as the war progressed. Fw 190 A-0 The pre-production Fw 190 A-0 series was ordered in November 1940, a total of 28 being completed. Because they were built before the new wing design was fully tested and approved, the first nine A-0s retained the original small wings. All were armed with six 7.92 mm (.312 in) MG 17 machine guns four synchronised weapons, two in the forward fuselage and one in each wing root, supplemented by a free-firing MG 17 in each wing, outboard of the propeller disc. Fw 190 A-1 The Fw 190 A-1 was in production from June 1941. It was powered by the BMW 801 C-1 engine, rated at 1,560 PS (1,539 hp, 1,147 kW) for take-off. Armament included two fuselage-mounted 7.92 mm (.312 in) MG 17s and two wing root-mounted 7.92 mm (.312 in) MG 17s (with all four MG 17s synchronized to fire through the propeller arc) and two outboard wing-mounted 20 mm MG FF/Ms. Side-view of Fw 190 A-2; the most notable change over the A-0 was the addition of three vertical cooling slits on the engine cowling, just forward of the wing. Fw 190 A-2 The introduction of the BMW 801 C-2 resulted in the Fw 190 A-2 model, first introduced in October 1941. The A-2 wing weaponry was updated, with the two wing root-mounted 7.92 mm (.312 in) MG 17s being replaced by 20 mm MG 151/20E cannon. Fw 190 A-3 The Fw 190 A-3 was equipped with the BMW 801 D-2 engine, which increased power to 1,700 PS (1,677 hp, 1,250 kW) at takeoff.[28] The A-3 retained the same weaponry as the A-2. Fw 190 A-3/Umrüst-Bausatz 1 (/U1) (W.Nr 130 270) was the first 190 to have the engine mount extended by 15 cm (6 in), which would be standardized on the later production A-5 model. Fw 190 A-3/U2 The A-3/U2 (W.Nr 130386) had RZ 65 73 mm (2.87 in) rocket launcher racks under the wings with three rockets per wing. There were also a small number of U7 aircraft tested as high-altitude fighters armed with only two 20 mm MG 151 cannon, but with reduced overall weight. Fw 190 A-3/U3 The A-3/U3 was the first of the Jabo (Jagdbomber), using an ETC-501 centre-line bomb rack able to carry up to 500 kg (1,100 lb) of bombs or, with horizontal stabilising bars, one 300 L (80 US gal) standard Luftwaffe drop tank. The U3 retained the fuselage-mounted 7.92 mm (.312 in) MG 17s and the wing-mounted 20 mm MG 151 cannon, with the outer MG FF being removed. Fw 190 A-3/U4 The A-3/U4 was a reconnaissance version with two RB 12.5 cameras in the rear fuselage and a EK 16 gun camera or a Robot II miniature camera in the leading edge of the port wing root. Armament was similar to the U3, however, and the ETC 501 was usually fitted with the standardized Luftwaffe 300 litre-capacity (80 US gal) drop tank. Fw 190 A-3a (a=ausländisch foreign) In autumn 1942, 72 new aircraft were delivered to Turkey in an effort to keep that country friendly to the Axis powers. These were designated Fw 190 A-3a, designation for export models and delivered between October 1942 and March 1943. Fw 190 A-4 Introduced in July 1942, the A-4 was equipped with the same engine and basic armament as the A-3. Fw 190 A-4/Rüstsatz 6 (/R6) Some A-4s were fitted with a pair of under-wing Werfer-Granate 21 (BR 21) rocket mortars, and were designated Fw 190 A-4/R6. Fw 190 A-4/U1 The A-4/U1 was outfitted with an ETC 501 rack under the fuselage. All armament except the MG 151 cannon was removed. Fw 190 A-4/U3 The A-4/U3 was very similar to the U1, and later served as the prototype for the Fw 190 F-1 assault fighter. Fw 190 A-4/U4 The A-4/U4 was a reconnaissance fighter, with two Rb 12.4 cameras in the rear fuselage and an EK 16 or Robot II gun camera. The U4 was equipped with fuselage-mounted 7.92 mm (.312 in) MG 17s and 20 mm MG 151 cannon. Fw 190 A-4/U7 The A-4/U7 was a high-altitude fighter, easily identified by the compressor air intakes on either side of the cowling. Adolf Galland flew a U7 in the spring of 1943. Fw 190 A-4/U8 The A-4/U8 was the Jabo-Rei (Jagdbomber Reichweite, long-range fighter-bomber), adding twin standard Luftwaffe 300 L (80 US gal) drop tanks, one under each wing, on VTr-Ju 87 racks with duralumin fairings produced by Weserflug, and a centreline bomb rack. The outer wing-mounted 20 mm MG FF/M cannon and the cowling-mounted 7.92 mm (.312 in) MG 17 were removed to save weight. The A-4/U8 was the precursor of the Fw 190 G-1. Fw 190 A-4/R1 The A-4/R1, was fitted with a FuG 16ZY radio set with a Morane "whip" aerial fitted under the port wing. These aircraft, called Leitjäger or Fighter Formation Leaders, could be tracked and directed from the ground via special R/T equipment called Y-Verfahren (Y-Control). More frequent use of this equipment was made from the A-5 onwards. Shipping & Handling Back to Top US ShippingPlease check eBay's Shipping & Payment tab USPS First-Class Mail® International ShippingPlease check eBay's Shipping & Payment tab USPS First-Class Mail International (Worldwide) USPS First-Class Mail International (Canada) FREE scheduling, supersized images and templates. Get Vendio Sales Manager.Make your listings stand out with FREE Vendio custom templates! FREE scheduling, supersized images and templates. Get Vendio Sales Manager. Over 100,000,000 served. Get FREE counters from Vendio today!

Price: 31.96 USD

Location: San Diego, California

End Time: 2024-03-10T02:37:04.000Z

Shipping Cost: N/A USD

Product Images

FROG 1/72-SCALE FOCKE-WULF Fw190A-4 WW2 GERMAN LUFTWAFFE JG KIT 393P (1959)

Item Specifics

Restocking Fee: No

Return shipping will be paid by: Buyer

All returns accepted: Returns Accepted

Item must be returned within: 30 Days

Refund will be given as: Money Back

Type: Aircraft

Brand: FROG

Scale: 1:72

Recommended

Daiwa Steez Hollow-Body Frog
Daiwa Steez Hollow-Body Frog

$16.95

View Details
Russian 91/30 Mosin Nagant Bayonet Scabbard Frog (Scabbard only)
Russian 91/30 Mosin Nagant Bayonet Scabbard Frog (Scabbard only)

$26.99

View Details
10+2 live Young African Clawed Frog (ACF) Albino And Brown
10+2 live Young African Clawed Frog (ACF) Albino And Brown

$50.00

View Details
Cozy Halloween Hoodies: Plush Frog & Fruit Costumes for French Bulldogs
Cozy Halloween Hoodies: Plush Frog & Fruit Costumes for French Bulldogs

$10.10

View Details
Natural Opal Quartz Crystal Lucky Frog Carved Gemstone Statue Mini Energy Decor
Natural Opal Quartz Crystal Lucky Frog Carved Gemstone Statue Mini Energy Decor

$4.08

View Details
Roblox - Blade Ball -  Explosions - Weapons - Cheap Items - Fast and Easy
Roblox - Blade Ball - Explosions - Weapons - Cheap Items - Fast and Easy

$1.99

View Details
Adopt From Me Today! Mega Neon Fly Ride MFR/NFR/FR |✨SAME DAY✨
Adopt From Me Today! Mega Neon Fly Ride MFR/NFR/FR |✨SAME DAY✨

$13.99

View Details
Frog Food
Frog Food

$3.77

View Details
Matchweed a.k.a. frog-fruit(300 seeds)fresh this season's harvest{RARE & EXOTIC}
Matchweed a.k.a. frog-fruit(300 seeds)fresh this season's harvest{RARE & EXOTIC}

$14.99

View Details
Caladium 'Frog in a Blender' Size #2 (2 bulbs)
Caladium 'Frog in a Blender' Size #2 (2 bulbs)

$9.95

View Details